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1. Introduction and Summary

We consider in this paper two highly structured problems of optimal

stochastic control. The two problems will be precisely formulated, and

optimal control policies of a simple form will be explicitly computed, in

Sections 3 and 4. In this section we present an informal description of

each problem and its solution, suppressing all technical detail.

Let X = tX(t), t > 0) be a Brownian Motion with starting state

x_> 0, drift and variance a >0 . Thus E[X(t)] = x + 4t and

2
Var[X(t)] = c t. We define a control to be a non-decreasing process

Y = tY(t), t > 0), with Y(O) 0, which is a non-anticipating functional

.of X). Thus, for each t > 0, the partial control history [Y(u), O< u < t)

may depend on (X(u), 0 < u < t) and possibly on other information as well,

but it may not depend on (X(t+u) - X(t), u > 0). (See Section 2 for a

precise definition.) In each of our problems, the objective is to find

an input control Y and an output control Z which maximize expected

discounted reward (over an infinite planning horizon) subject to the

constraint that W(t) = X(t) + Y(t) - Z(t) > 0 for all t > 0 (almost

surely). It is the hypothesized structure of costs and rewards that

differs in the two problems.



Given a constant k > 1, the objective in our first problem is to

find an admissible control policy 'Y,Z) which maximizes

E[Z(O, + f e dZ(t)] kE[YkO f e dYkt.]
0 0

where Y > 0 is the interest rate, By way of interpretation, we imagine

a storage system \such as an inventory or a bank account) whose content

evolves as the Brownian Motion X in the absence of any control In

particular, X(O.) represents the initial content of the system, The

controller may at any time withdraw material from the system, and Z, t)

represents the total withdrawal during the interval [Ot], or cumulative

output up to time t,, He receives a reward of one dollar for each unit

of material withdrawn, If the content of the system falls to zero, however

then the controller is obliged to inject material into the system so as

to keep the net content positive, and he incurs a cost of k > I dollars

for each unit of material injected We interpret Y t as the total

injection during the interval [O(,t]), or the cumulative input up to time

t We call W = XY-Z the controlled process and X the uncontrolled

MEo2ess

In Section A. it will be shown that an optimal policy for this

first probleyn is the minimal pair of controls (YZ) which achieves

0_< W~t% < S for all t > 0 almost surely;, where S is the unique

positive solution of a certain transcendental equation. Thus the

controller should withdraw only as much material as is required to keep

the net content below S, and he should inject the minimum amount

necessary to keep the net content positive. The optimal controls are

2



explicitly described in terms of certain maximum and minimum functionals

applied to X, and the corresponding controlled process W behaves as

the Brownian Motion X modified by (instantaneously) reflecting barriers

at zero and S. The optimal controls are (almost surely) continuous but

not absolutely continuous, due to the unbounded variation of Brownian

paths. Thus one cannot describe the optimal policy in terms of input and

output rates. Still it is in a certain sense a bang-bang policy, as

one would expect with our linear cost structure.

Our second problem differs only in that we require the input control

Y to be a (random) step function, and we assume that a fixed change of

K > 0 dollars is incurred each time an input jump occurs. (This is

additional to the proportional charge of k dollars per unit of input.)

In Section 4 it will be shown that the optimal policy is as follows. Each

time that the net content W hits zero, the controller increases the

cumulative input Y by s units, where s is the unique positive solu-

tion of a certain transcendental equation. Between these input events,

the controller increases the cumulative output Z by the minimum amounts

necessary to keep the controlled process below level s+S, where the

positive constant S is the same as in our first problem.

Section 2 contains a number of formal definitions and some

important preliminary propositions. The central results are stated and

proved in Sections 5 and 4. In Section 5 we discuss the application of

our results to problems of inventory control and stochastic cash manage-

ment. In particular, it is shown that our formulation need be altered

only trivially to include problems where the controller continuously

incurs holding costs at a rate proportional to the net content of the

L1



system W t), We also discuss the relationship between our model(s)

and other (approximate) diffusion formulations that have been suggested

for such problems. In Section 6 we discuss the difference between our

formulation and various other theories of optimal stochastic control.II
2. Preliminaries

Let ] = (-o, o), + = [0, oo), I= t0, 1, ... and I = [1,2,...).

Throughout the paper, let U > 0, i EIR, a2 > 0, k > 1 and K > 0 be

fixed constants. We assume a measurable space (f2,3) on which is

defined a family of probability measures [Px, x C R) and a process

X = (X(t), t > 0) such that X is Brownian Motion with drift 4,

variance a2 > 0, and starting state x with respect to P (x E R).

We denote by E the expectation operator associated with P . Thex x

following proposition follows easily from standard properties of

Brownian Motion.

Proposition 1, E sup(e " it X(t):t > OK < -, x V--R.

We further assume the existence of an increasing family of sub-a-

algebras (3t, t > 01 such that X is adapted to ( t3 and

X(t+u) - X(t) is independent (with respect to P for all x E]R)
x

of Rt for all t > 0 and u > 0. We say that a random variable T

is a stopping time if P(0 <0. T < oo = I for all x cIR and
x -

.T < t0 E ;t for all t _> 0. Using the separability of X and our

4



assumptions on (5t one easily obtains the following by a standard type

of argument.

Proposition 2. If T is a stopping time and Z is measurable ;y then,

for all x EIR,

P x Z + X(Tst) K I9=PZ+X(T)(X(t) Ky), t > 0, y cIR

Proposition 5.If T is a stopping time, then

T
OE xf e- t X(t) dt + E xe-U X(T) =x + i[1 - ,~)/ x EIR

where A(x) =E xe- ,T x C IR.

-atProof: Let f(x) = 02 f e X(t)dt, x CIR. Then
0

f(x) = a! e- t E xX( t) a f -e- t (x+4t) =x + a
0 0

by Fubini's Theorem. Using this and Proposition 2, we have

x +4/U-E xf Te- at X(t)dt f(x) E f Te-at X(t)dt
0o 0

00 0

E EJ -at X(t) dt =E te TE [f e-at X(T+t)dtI,7])xT x x 0

E xe aTf(X(T)) = E xe- aTX(T) + 4i/a]

which completes the proof.



I[
41

If f is a real-valued function on some interval subset of IR,

1 2
we define $f x) = f ) - - a f"(x) for all x such that f'(x) and

f"( x.; exist.

Proposition 4. Let f :IR -, JR be non-decreasing and twice continuosly

differentible with Jef - aZf < 0, Assume x CIR and let T and T be

stopping times with P 1T < T ) = 1, Finally, let Z be measurable

Then

1, E e f('Z -XT <. E e -  f(Z + XT ,

if both expectations exist and are finite,

Proof: Assume first that f and its first two derivatives are bounded.,

We begin by proving a slight generalization of the discounted form of

Dynkin's identity, c,f, Breiman (1968), equation (16 61) Let

g(x, - Jf x. -rflx) for x CIRo Then a standard result for Markov

processes in this case the Brownian Motion X with generator a and

their resolvnts gives us

'2 f(x) E f ea g(X(t))dt , x IR
x 0

cf Br'im-,n k968), Theorem 15,51. Since Z is measurable we

can combine i < with Proposition 2 to obtain

6



Co Co

E) fe-Eat g(Z X(t))dt E e " UT  f e g(Z + X(T,+t))dt(5 X T e 0(

E fe Oa* E [f et g(Z + X(T+t))dt
K0

E e 1E f e g(X(t))dt
x Z+X(T )

= E e f(Z + X(T,))x

But Z is measurable T also, so an identical argument gives

(4) m e-at g(Z + X(t)) E e-UT f(Z + X(T*))
x T* x
T

Subtracting (3) from (4) gives

E x [e-UT f(Z X(T)) - e - f(Z + X(T,))]

E [-T fZt g(Z + X(t)) dtXX

T*

The right side is non-positive, since g(x) < 0 for all x CIR, so the

proposition is proved.

If either f or one of its derivatives is unbounded, we can easily

construct a sequence of bounded functions f having two bounded con-

tinuous derivatives and such that fn(x) = f(x) if If(x) < n and

Ifn < ifl, n I . (The construction is particularly easy with our

nn

in place of f, and obviously f -f, so (1) holds by dominated con-. n

vergence if both expectations exist and are finite. This completes the

proof.
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We de fin e non-anticipating functional to be a process

Z .Z t t - 0 on ( H2, ;) taking values in D[0, co) and such that

Z~ t, i ,m nas, ir -ab I, for each t > 0, We define C to be the set

f non-inticipating functionals Z which are non-decreasing with

ZO;0 > 0, _iu je d, fine C~ to be the set of Z c- C such 'that

ER Z IR where

- -(Yr

RZe Z(t)dt , ZC

Then P Z L -0 as t -~J 1 for all Z &C and path-x xy

wise Rieiiinn-Stiettjus) integration by parts gives

P KR 7) -_ Z:' e- aet dZ(t)) = 1 for all ZEC
x. ~ 0

We define L t,- be the set of (random) step functions in C having

only finir.1y rndny jumps in any finite interval, and we take £g toL

be the set _)I Z n f C such that E R Z) < x IlR) , whe re
x x

aTTI 1 Z)

whe re T n X i, tht n th jump time of Z,

'J'=(.e Z(t) t >o01 < -~if x .IR, Z C
x x



Proof: Since Z is non-decreasing, we have

-a t

f e-U Z(u)du> f a e-U Z(t)du= e Z(t)
t t

Taking the sup of each side over all t > 0, the left side becomes

R(Z), and the proposition follows from the fact that E R(Z < c.
x

Proposition E. Suppose f : -4 IR is non-decreasing with f(x) < a+bx

for some b > 0, that x > 0, and that Y C x  and Z C C x  satisfy

() PxIX(t) + Y(t) - Z(t) > 0 for all t > 0) : 1

Then E sup(e "
-

t f(X(t) + Y(t) - Z(t) : t > 03 < .

Proof: Since f is non-decreasing and Z(.) > 0, we have

6) et f(O) _e f(X(t) + Y(t) Z(t)) < e-at f(X(t) + Y(t))

< e-atFa + bX(t) + bY(t)]

almost surely (with respect to P x for all t > 0. The desired result

then follows immediately from Propositions I and 3.

Proposition 7. Let f, x, Y and Z be as in Proposition 6. If

(Tn, n 11 are non-negative and Px (Tn 1- then

Ox n

E e" n f XiT n Y(T n Z(T )) -0 as nx Tn Tn Tn) . .

,t.)



Proof: From standard properties of Brownian Motion and the definition

of it follows that " t X(t) ,0 and e Y t) .0 as t

almost surely (with respect to Px). Using the bound ond the fact

that Tn . lmost surely, we then have

e T n f(X(T) - YT - Z(T 0 -_ as n
n1 n n

almost surely The desired result then follows, Tlsing Proposition

and dominated convergence,

The Control Problem with no Fixed Charges

For our first problem, we define an x-admissible policy (x > 0

to be a pair of controls Y, Z t Cx  satisfying We say that an

x-ddmissibal policy (Y Z is x-optim-l ,x 0 il, for every

o ther x-odmissible policy (YZ(,

E R Y - kE R(Z) > E R(Y) - kE R( )
x x x x

We now construct a specific policy Y , Z which wi1 eventually

h mown x-optim-_,I for all x > O Let ,o and + -

Sld let S ,_ the unique positive solution of

10
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It is toasy to verify that the left side of ('1' is continuous, convex and

strictly increasing in S with valu ' at S 0. Sin& k 1, Lk

there is thus a unique positive solution. With X( 0) x > 0, we Lake

z0 - TO - 0 and W0 0 0, and then for n 0, 1,... w recursiely

• _ L wX , X,, T: n0

Xn I  t : W . ; -i' X*'T +u-L - X~.t --0

z t - suK 2 ' 1 U) 0 < u< t3 - , t >0211 l 1'X2n+ ---I'-

, w . l t) x 1 t )  - z. L( :

. - infit > 0: W, t 0, and _ .

1- Y n, XI n- LA,

_-intX <o) : 0 Ii tj 0

W it X tt Y0 , t0

-infit:0 t:W.n S and _ 1.n -- 'n _1.41 ,n,- 2

Als Vt Y t, ZI YL ') 0 lor all - 0. It

I s r.;sy tj show that

P 10 T T t1 or all x 0.;II



Then for n. I and t E [0 Tn) we define
Sn+l

Y (Tn+t) = 7 Yi(Ti) + Ynl(t) ,

n
Z*(Tn +t) = Zi(Ti) + Zn+l(t)

W (T+ t) = Wn+l(t) ,

so that W*(t) = X(t) + Y (t) - Z*(t) > 0 for all t > 0. The initial
time interval OTlj is a period of output control only. There is an

initial output of size Z (0) = Z(O) = [X(O)-S]+ , and during the

remainder of the period the cumulative output Z = Z increases in the

minimum amounts necessary to maintain X-Z < S. The controlled process

W I  X-Z has state space (-ooS] and WI(O) = [X(O) A S], and it is

known to behave as the Brownian Motion X modified by an upper (instan-

taneously) reflecting barrier at S. (We shall use this fact later with-

out further comment.) The period ends when W = W hits zero. Each
I

subsequent interval of the form [T2n T 2n+lI with n E I+  is similarly

a perjid of output control only. The controlled process W starts in

state S thet cimulative input Y remains constant, and the cumulative

output Z increases in the minimum amounts necessary to maintain

w x z _<s.

Each interval of the form [T Tn] is a period of input
2nd' 2n+2

control only. The controlled process W starts in state zero and

behaves as the Brownian Motion X modified by a lower reflecting barrier

at zero. The cumulative output Z remains constant, and the cumulative

input Y increases in the minimum amounts necessary to maintain W > 0.

12



The period ends when W hits S. In total, W has state space tOS1

and behaves as X modified by reflecting barriers at both boundaries.

Observe that (Y , Z ) is an x-admissible policy for every

starting state x > 0. We wish now to calculate

f(X) : E xR(Y ) - kR(Z)J , x >0.x

As a first step, it is immediate from the construction that

(.i) f(x) = (x-S) + f(S) for x > S

Assuming now that X(O) E [0,S], we define

T
- at -tYdt,

flx E [a I e ZI(t)dt + ZI(TI)Z , _x _S

r:- 01

A'x) :E e 0 < x <S.
x

Rememibering that Y t)v 0 if 0 K. t < TIy it follows easily from our

construction, the strong Markuv property of X, and the definition of

R. that

x) ff x) i CE e-" rZ (t) - Z (T1) kY*(t)]dt
x T

] f" x) .,zkx -e: f(W* T)

X) (iA'X) fo) , 0 < .

( , 1)



f

Now to solve for f we recall that Wl(t) = X(t) - Zl(t) for 0 < t < T

and X(TI) = ZI(TI) since W(T) = 0. Thus

(10) fl(x) = OE f  e-[x(t) Wt(t)]dt + E e-Tl X(TI)

TI -T

-at
for 0 < x < S. Defining H(x) E f e Wl(t)dt for 0 < x < SP

0

Proposition 3 and (10) give us

(11) f 1 (x) = x + [ - A(x)]/a - cai(x) , 0 < x < S .

Recall that TI = inf(t > 0 : Wl(t) = 0) and that W, behaves as the

Brownian Motion X with an upper reflecting barrier at S. Then standard

results for the first passage times and potentials of Markov processes

(in our case WI) show that A and H satisfy the differential equations

(12) A(x) - CLA(x) = 0 and x + kq x) - Cl(x) = 0, 0 < x < S

with the boundary conditions

(13) A(o) = , (O) = 0, and A'(S) - H'(S) 0

Combining (9) - (13) we find that f satisfies

(14) j.f(x) - Cf(x) 0, 0 < x < S, and f'(S) = I

14



Furthermore, there is a precisely synmetric argument, (defining a new

sequence of stopping times T' such that the initial period 0, Tn
n f n

is one of input control only when 0 < X(O) K S) to show that the second

boundary condition is

(15) f'(O) k

Using standard methods, the unique solution of (14) and (15) is found to

be

(16) f(x) = COe(- fr t ) x  be0(+)x O < x < S

where the constants a and b are chosen to satisfy the boundary

conditions f'(O) = k and f'(S) = 1. Elementary computations then

give

17) a (e s
- ke-)i(Y-3) (e s - e- Y s ) ,

(l;' b - (ke s  eS )/((+) (e r - e r )

Proposition ... The function f :IR- ,R is concave, increasing and

twice continuously differentiable with f(S) i/cZ. Furthermore,

Sf'x) - .f(x) <O, l< f'(x) -k and f(x) S (! -5) + x for all

x > 0.

,,.,5



Proof: From (3) and (14) it is immediate that f' exists and is continuous

on IR For O < x < S we differentiate ,16) twice to obtain

(19) f"(x) = a(y-3)2 e(r-p)x - b(r+3)2 e(+ )x

Setting this expression equal to zero, multiplying through by exp(Px),

and substituting (17) and (18) for a and b, we find that f"(x) = 0

if and only if (7) holds with x in place of S. Thus f"(S) = 0 with

S chosen to satisfy (7). Clearly f"(x) = 0 for all x > S by (8), so

f" exists and is continuous. Since 1PI < , it is clear from (18) that

b > 0. Since f"(S) = 0, it then follows from (19) that a > 0 and

hence that f" is strictly increasing on [OSI. Thus f"(x) < 0 for

O < x < S, and it follows from (8) that f is strictly increasing and

concave on R Since f'(0) = k and f'(x) = I for x > S, this

implies that I < f'(x) < k for all x > 0. With f'(S) = I and

f"(S) = 0, we have .Sf (S) = b. Since ,Sf - af 0 on [OS] this

gives us f(S) = 4/ Then (8) yields .f (x) = for x > S, implying

f( x) -f(x) = - (i/a + (x-S)] -(x-S)

for x > S, so 4f - cf < 0 on ER. Finally, f(x) (p/Q - S) + x

for x > S by (10), so the concavity of f gives f(x) K (4/a - S) + x

for x > 0.

Remark. As the proof shows, f' is continuous regardless of how one

chooses S, but f" is continuous if and only if S is chosen to

satisfy ('

16



Theorem 1. If x > 0 and (YZ) is an x-admissible policy, then

E R(Z) - kE R(Y) . f(x). Thus the policy (Y Z constructed above

is x-optimal for all x > 0.

Proof: Let x > 0 and (Y,Z) be fixed. When we speak of almost sure

convergence, this refers to Px . The idea of the proof is essentially

to approximate Y and Z by (random) step functions. Given E > 0,

we define an increasing sequence of stopping times T (hoping then

reader will forgive this re-use of previous notation) by setting To = 0

and

T - inf(t > T n Y(t) > Y(T n) + E or Z(t) > Z(T n) + c or t T +)n~ - n- n- n

for n _ I. That each T is a stopping time follows immediately fromn

the fact that Y and Z are nonanticipating functionals. Furthermore,

0 < T 1 < T2 < ... because Y and Z are right continuous. Finally,

T - almost surely as n -@ because both R(Y) and R(Z) are~n

almost surely finite. Let

YO=Y(O) + C z 0  Z(O), qo zo ky O

0 0 q 0  f(X(o) + Y0  Zo) f(X(o))

and then for n I

ly



n+l YTn+l) Y(Tn)n ZTn.) " Z('Tn) 

n n
y = yi = Y(Tn) + E Z Vz Z(Tn)n n= n n=

fl f f 1 n

D =Y -z q -Z ky
n n n n n n

A U - n+ i [fX
An+l e n +l + f(X(Tn+1 ) + Dn+l) (X(Tn+1 ) + Dn) ,

- Or + 
-UT

B = e ni- f(X(T)n+l + D) e f(X(Tn) + Dn)

With these definitions, we have

n n-i n -OfX. -UT
(20) 7 A + T Bi i e q + e f(X(Tn) + Dn) - f(X(O))

i=O i=O i=O

From our construction and the fact that (YZ) is x-admissible it

follows that X(T ) + D > E and X(T + D > 0 almost surely for
n n n+l1

all n C- I. Since 1 < f'(x) < k, it is then immediate that A < 0

almost surely for all n E 1. Furthermore, we can use Proposition 4 to

show E B < 0 by making the following associations. Let f be asx n -

defined above for x > 0 and define f(x) by (16) for x < 0. Then

Proposition 8 shows that f satisfies the hypotheses of Proposition 4.

Let T* = Tn+l1 T = Tn and Z = D = Y(T n ) - Z(T n) + E so Z is

measurable . Then Proposition 4 gives E B ' 0, it following
* x n-

immediately from Propositions 6 and 8 that both expectations exist and

are finite. Thus, taking the expectation of both sides in (20), we

have

18



n -dr.

(21) E 7 e 1 1- f(x) -E e f(X(T~ + D)
x 0 7

Noting again that D n Y(T ) - Z(T n + cit follows from Propusitions 7

and 13 that the second te2rm on the right side of (21) goes L~o zero as

n -- ,giving us

(22) E e q.Kf(x)

Let Y-I( t) =Y n and ZTh(t) = Z n for T n <L <T nland n 1. From

our construction it follows that (Yb Z ) is an x-admissihle policy

with

Y( t) KY#( t) < Y( t) + E and Z( t) E Z#- K t ) KZ( t)

for all t > 0, from which we have

') R(Z) -kR(Y) -(l+kc () # k(#)

e Iq. _ R(Z) -kR(Y)

i-0 1

Thus E IR(Z) -kR(Y)1 < f(x) t- (l,-k)c hy (22) and (25). Since > >0
x

was chosen arbitrarily, the proof is complete.



4. The Control Problem with One Fixed Charge

For our second problem, we define an x-admissible policy (x > 0)

to be a pair of controls Y C Lx and Z C Cx such that (5) holds. We

say that an x-admissible policy (Y  Z is x-optimal (x > 0) if,

for every other x-admissible policy (YZ),

E [R(Z*) - kR(Y*) KR*(Y*)] > E [R(Z) kR(Y) -KR(Y)]

As in the previous section, let S be the unique positive solution

of (7), and let a > 0 and b > 0 be defined in terms of S by (17)

and (18) respectively. (Recall that we showed a > 0 in the proof of

Proposition 8.) Now let s be the unique positive solution of

(24) 41 - e 1 + b[e('-3 - 1] K + ks

Elementary calculations show that the left side of (24) is strictly

convex and increasing with value zero at s = 0, and that its derivative

increases without bound as s increases, Thus there is irl fact a

F unique solution s.

With X(O) _>:0, we set 'r = To = 0 and then define Z

WI(t) and T T in terms of X and the positive constant (s+S)

exactly as they were defined in terms of X and the positive constant

S in the previous section. Then for n 2, ... let

20



X(t) s +XT - X _ 0

n, t) (S(X " \ 0 UZ t) : supXn ) : _ . s ,_

W (t) = X (t) - Z t 0
n n n

r = nft > 0 W j 0O a0nd T" T INn n n I' l n-] 11

Again it is easy to show that

P fO - To  T T, . I for all x > 0
X

and for n I and t [0, 1ni) we define

n

Y (t) - ns, Z (t) Zi(-Ti) + Z n l(t)
ii1

and W 't) Wn+l(t), so that W (t) X(t) + Y (t) - Zt) for all

t > 0. The behavior of the controlled process W W during the

initial interval [0, T,) is as described in Section 5 except that

now the upper reflecting barrier is at (s+S). Each subsequent time

interval [TIl T n+) begins with a jump of s in the cumulative input

Y this moving the controlled process W from state zero to state s.

During the remainder of the period, Y remains constant and the cumulative

output Z increases in the minimum amounts necessary to maintain

W _ (s+S). The period ends when W hits zero and jumps upward by s

again.
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Using arguments very much like those employed in the previous

section, it is straight-forward to show that the function

g(x) Ex[R(Z*) - kR(Y*) - KR*(Y * ) ], x > O,

satisfies ,g(x) - czg(x) = 0 for 0 < x < s+S, with g'(s+S) = 1,

g(O) = g(s) - K - ks, and g(x) = g(s+S) + (x-S-s) for x > s+S.

Again the unique solution has the form

(25) g(x) = a 0 e ( - )x - b0 e - ( +P) x  for 0 K x < s+S

where the constants a0  and b0  are selected to satisfy the boundary

conditions g'(s+S) = I and g(O) = g(s) - K - ks. The reader may

easily verify that, with s chosen to satisfy (24), the selection

(26) a 0 = a e( )s and b0

meets the boundary condition g(0) = g(s) - K - ks. We then further

have (defining f by (16))

(27) g(s+x) = a e(-- ) x  b e - (
-

+ 3) x  f(x) for 0 K x < S.

In Section 3 we showed that f'(S) -- 11 so our second boundary condition

g'(s+S) 1 is also satisfied, and the complete solution for g is

given by (25), (26) and g(s+S+x) = g(s+S) + x for x > 0.
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Proposition . The fuuction g iR -R s concave, increasing and

twice continuously differentiable with g(s±S ) Furthermore,

S:g(x) 0, g'(x) > I and g(x) ' - s - S) i x for all

x > 0. Finally, x-tY) - g(x) " K + ky for all x > 0 and y > 0.

Proof: Clearly a - 0 and b > 0, and differentiat ing twice
0 0

gives

g"(x) 2 e(2) -+3 bxyr3

0, Y -a -) e -(b + ) x  0< x <. s+S

so g" is strictly increasing on [0, s+S 1 . We showed in the proof

of ProposiLion t that f(S) - u/0, f'(S) = I and f"(S) 0 0, so 2)

gives us g(ss+S) /(, g'(s+S) 1 and g"(s+S) := 0. It then follows

as in the proof of Proposition { that g is concave, increasing and

twice differentiable with _f - Cf - 0, Since g'(x) 1 for

ncavity implies g'(x) > 1 for all x > 0. Also we

showed in Section .5that i '(0) -k, so 2(*) g iv es g' s) . k, From

the concavity of g we then have

K (2'( g(y) , O, k <g(s') -g( O'- ks K for all v > 0.

Finally, the concavity of g implies that g x+y) g(x) is a non-

increasing function of x for all y > 0. Combining this with 2o)

proves the last statement of the proposition.



TLeorem 2. If x > 0 and 'Y,Z) is an x-admissible policy, then

E [R(Z) - kR(Y) - KR (Y) j < f(x). Thus the policy KY Z) constructed

above is x-optimal for all x > 0.

Proof: The proof is very similar to that of Proposition 8, and we shall

only sketch it. We define the sequence of stopping times T (againn{

apologizing for the notation) by T = 0 and
0i

T infft > : Y(t) > Y(T) or Z(Lt > Z(T) +
n-1 n n n

or t 4

for n Q. I. We proceed exactly as in the proof of Proposition 8

except that f is replaced by g throughout, we take y Y(O),

4! and we define

q- z n kyn Yn > O

To show that A 0 almost surely with this change in the definition of

q we usC tht fact that g' I and g(xtv) - gtx, K t ky by

SProposi tin That E B < 0 for all n follows exactly as betore.

Definin, Y" t) Y and Z Kt) V Z for T t T and n I,
n n n - n,

we arrive at

E R, ") kR Yi) - KR(Z)] Z E -  1i  fx)

But Y "t) Y,'t) and Z(t) -e Z(t ) Zt, lor ill t > 0, so the

desired result follows directly.

I 
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EicR( z, kR(Y) j e h(W(t))dtJ

0

If h1 x hx for all x > 0, then the last term inside the brackets

is just

at

Xt) Y' t) - V t) ~ : h/(e) [iN(Y) - R(Z) + h e X(t)dt.

0!surving that the last term is uncontrollable (depends on neither Y .:tdt

nor Z), we then see that the total objective is to maximize (c + h/a) ER(Z)

: k - h/a2) ERY). Assuming without loss of generality that c + h/cz = 1,

this is precisely the problem formulated in Section 3. If the irregular

production process Z is a step fanction, and if a set-up cost of K > 0

is incurred each time that a jump in the irregular production occurs,

then we similarly obtain the problem formulated in Section 4.

A closely related diffusion model of optimal inventory control

has been advanced by Bather (1966). In our notation, Bather assumes

O and K > 0, and he considers a linear holding cost function h(.).

There is no piovision for sale of excess inventory in his model

0 1. The stock level is permitted to go negative (backlogging

is p-rmitted',, but linear shortage costs are incurred when this happens.

Attention is restricted to a simple class of input step functions Y

which jump by a fixed amount CS-s) whenever the inventory on hand

decreases to a fixed level s, the objective being to minimize average

cost per unit time over an infinite planning horizon. Other diffusion

formulations for problems of optimal control of dams, inventories and

storage systems are given by Bather (l)o'), Faddy (1974a,b), Whitt (1973a,b),
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both a fixed charge K > 0 and the proportional charge kY then we get

the problem formulated in Section 4,

Constantinides (1976) has examined both of these cash management

problems with the objective of minimizing average cost (rather than

expected discounted cost) over an infinite planning horizon, and he has

further considered the case where both types of conversion entail both

fixed and proportional transaction costs. (See Section 6.) His results

are very similar to ours, but the methodology employed is quite different,

and we do not fully understand his proofs.

For both inventory control problems and stochastic cash manage-

ment problems, one finds that the diffusion formulations discussed

above are much more tractable than more traditional (usually discrete

review) models. For our particular problems, we have shown that the

optimal policy (from a very broad class of potential policies) has an

extremely simple structure, and the assumption of an underlying Brownian

Motion further permits explicit determination of the relevant critical

numbers. With traditional formulations, even the structural results may

fail, and the computation of optimal policies is typically a complicated

matter. See Girgis (1968) for a demonstration of this in the case of

cash management.

On the other side of the issue, it simply may not be reasonable

to represent the underlying (net demand or net production) process by

a Brownian motion. Bather (1966) suggested that a non-decreasing demand

process be approximated by Brownian Motion with positive drift, but as

Whitt (1971,a) has pointed out, this is not a circumstance where one

expects a good approximation. In each of our applications, we have
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emphasized problems where the underlying process X represents the

difference of two non-decreasing processes, and in this circumstance

various theorems on the (weak) convergence of stochastic processes may

be invoked (with further assumptions on the parameters of the relevant

processes) to justify the Brownian approximation. See for example,

Harrison (1975). Even when this can be done, there remains the problem

of justifying one's diffusion optimization problem as a reasonable

approximation to the original optimization protlem. If one restricts

attention to policies which are explicit functionals (and continuous in

the appropriate function space topology) of the underlying process, we

believe that this might be a manageable task in the rather restrictive

setting of our model, but the issue will not be pursued further here.

6. Concluding Remarks

If for each t > 0 we define J&t to be the sub-a-algebra

generated by (X(u), 0 < u < t , then it follows from the stationary,

independent increments property of X that X(t+u) - X(t) is independent

of Jt for all t > 0 and u > 0. Thus we may take t in our
t t

formulation (Section 2), and in genral we must have St c jt for all

t > 0. If a control policy (Y,Z) has the property that Y(t) and

Z(t) are measurable $t for all t > 0, we shall call it a non-randomized

policy. Given a non-randomized policy (Y,Z), let Vt be the a-algebra

' n generated by X(t) + Y(t) - Z(t) for t > 0. We shall say that

(YZ) is a Markov p if Y(tu) and Z(tu) are measurable t
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for all t > O and u.'O Finally, we shall say that a Markov policy

(Y,Z) is stationary if the condiLionrL distribtion f Y',t+u) Y(t),

Z( t+u) - Z(t); u > O given %' depends only on X, t; + Yt' ) Z' t"
t

and not on t (t > 01 All of this terminology conforms with the

standard usage in (discrete time) dynamic programming, appropriately

adapted to our setting Roughly speaking, a policy YZ) is non-

randomized if the controls applied up to time t depend only on the

history of the underlying process X up to time t and not on any

other "irrelevant" information contained in Jt, It is Markov if the

controls to be applied after time t depend on the history up to time

t only through the current "state of the system" W't) = X(t) + Y(t) Z(t),

and it is stationary if this dependence on Wt t) does not involve t.

As the reader may easily verify, the policies that we have shown to be

optimal for our two problems are both (non-randomized and Mark:'v

stationary policies,

A natural successor for the two problems considered in this

.4 paper is one where both the input control Y and the outpjt control

Z must be step functions, and there are (different) fixed costs

associated with both input jumps and output jumps Similar "and much

more complex problems of pure impulse (jump) conitrol have been con-

sidered bv Bensoussan and Lions ( 9'75, 1975) and by Richard (1976),

but the method of proof ised here can also be extended to the case

of two fixed charges, As we shall demonstrate in a future paper, there

exists an optimal solution for this problem which involves only three

critical numbers, but the computation of those critical number, is

quite complicated If we allow one (respectively, both) of the fixed



charges to approach zero, we find that the optimal controls approach

those displayed in Section 4 (respectively, Section 3) almost surely.

Thus, roughly speaking, each of the problems treated here can be obtained

as the limit of problems involving two fixed charges.

Our problem with no fixed charges (Section 5) can also be approxi-

mated by a formulation of the type considered by Mandl (1968) and Pliska

(1973). Suppose that the non-decreasing controls Y and Z are both

required to be absolutely continuous and non-decreasing with a density

bounded by c > 0. We cannot then require that W(t) = X(t)+Y(t)-Z(t)

remain positive, but we suppose that a large penalty cost of M (dollars

per unit time) is continuously incurred so long as W(t) < 0. It can

then be shown that there are critical numbers a and b with 0 < a < b < 00

such that one optimal policy is the following. When W(t) < a, the con-

troller increases Y at the maximum permissible rate c, when W(t) > b

he increases Z at rate c, and when a < W(t) Kb he does nothing.

If we let c --)c, we find that a -*Oi b - S and the optimal controls

converge almost surely to those displayed in Section 5.

Having indicated in the last two paragraphs that our problems can

be approximated in either of two ways, we emphasize that either type of

approximate formulation is harder to solve than the problems as we have

stated them. Also, we repeat that the optimal controls displayed in

Sections 3 and 4 are neither absolutely continuous nor step functions.

We are not aware of any previous formulation of a stochastic control

problem which permits controls of the type that we have found to be

optimal.
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Abstract

nonsider a storage system (such as an inventory or ban ,account) whose

content fluctuates as a Brownian Motion X = (X(t), t > ))in the absence o

any control. Let Y = (Y(t), t > 0) and Z = (Z(t), t >0 b0) non-

decreasing, non-anticipating functionals representing the cumulative input

to the system and cumulative output from the system respectively. The

problem is to choose Y and Z so ac to maximize expected discounted

reward subject to the requirement that X(t) + Y(t) - Z(t) _0 for all

t .0 almost surely. In our first formulation, we assume that a reward of

one dollar is received for every unit of output, while a cost of k > 1

dollars is incurred for every unit of input. We explicitly compute an

optimal policy involving a single critical number. In our second formula-

tion, the cumulative input Y is required to be a step function, and an

additional cost of K > 0 dollars is incurred each time that an input

jump occurs. We explicitly compute an optimal policy involving two

critical numbers. Applications to inventory/production control and

stochastic cash management are discussed.
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